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Abstract 
The human body comes in many sizes and shapes. For design purposes, it is useful to be able to 
quickly simulate a virtual mannequin of a customer. A statistical shape model can be used for this 
purpose, because it describes the main variations of body shape inside the model’s population. From 
this model, the specific features of each person in the population are known. Therefore, a mapping 
between the shape model parameters and specific features can be calculated, which allows adjusting 
the body shape, in an intuitive way. In this work, we have investigated how accurate a body shape 
can be predicted based on a set of features and which features are most suitable for this purpose. 
Height, weight, and hip circumference appeared to be the most suitable features to accurately predict 
the body shape. 
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1. Introduction 
When designing a near-body product, it is useful to be able to quickly simulate a virtual mannequin of 
a customer [1]. This mannequin must closely resemble the actual body shape of the customer. Such 
models (Digital Human Modeling Tools – DHM) are already available [2, 3, 4, 5], but their applicability 
is still limited. Indeed, the current models are a simplified representation of the body and the 3D 
variation in shape of the population is usually not included. Moreover, the changes in shape are often 
univariate (body stature). As a result, they are not suitable for the design of products while focusing 
on comfort. 
Detailed, realistic models are not available yet, but would have an added value for the design process. 
These models should be accurate, easy to adjust and require a minimum number of parameters [6, 7, 
8].  
During the design process, the products could be virtually validated with a broad range of body 
shapes included in the body model. A statistical shape model [9] of the population is an elegant 
approach to obtain detailed mannequins that are adjustable in body shape [10, 11].  
In this work, we evaluate a data-driven technique to extract specific feature parameters from a 
statistical shape model [12]. We have investigated how accurate a body scan can be predicted based 
on measured features and which features are most suitable for this purpose. 

2. Materials and Methods 
2.1 Building a Shape Model 
From the CAESAR database, a sample of the Dutch population is selected. From this subset, a 
statistical shape model is built to obtain a compact description of the shape variances inside the 
population. To build such a model, the surfaces must be in correspondence. To correspond the 
surfaces, we used an elastic surface registration algorithm [13]. 
 
2.1.1 Surface Registration 
In the surface registration part, a reference surface is registered to a target surface, such that the 
geometric distance between those surfaces becomes minimal while maintaining correspondences. 
The target surface was a smooth surface with distinct features. The reference surface has been 
uniformly resampled and made watertight. 
First, an initial global rigid registration is obtained. Then, a global rigid registration and an elasticity 
modulated registration are iteratively repeated. During the iterations, the stiffness gradually decreases, 
such that the surface will become more elastic through the iterations. The framework is illustrated in 
Fig. 1 The surface registration framework. 
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Fig. 1 The surface registration framework 

 
The first step of surface registration is a rigid alignment of the source and target mesh. To that end, in 
both surfaces corresponding points are identified. This is done by casting a normal ray from each 
vertex of the reference surface to the target surface. When the normal of an intersection point is in the 
same direction (within a tolerance) as the normal of the point on the reference surface, those points 
can be considered corresponding. Another restriction for corresponding points is that the normal may 
not intersect the surface multiple times before reaching the corresponding point. Those points are 
used to align the surfaces using a least squares estimation of transformation. 
In the elastic part of the registration the vertices are allowed to translate separately, while motion is 
restricted by a stiffness parameter ߚ that regulates the strength of the connection with the neighboring 
vertices and which decreases during the iterations. In this way, the movement of neighboring vertices 
is constrained, resulting in similar movements for nearby vertices, as displayed in Fig. 2Fig. 2. By 
applying weights to each vertex the importance of this vertex can be set. If no corresponding point for 
a vertex of the target mesh can be found, its weight is set to zero. In that case, this vertex simply 
translates along with its neighboring vertices.  
 

 
Fig. 2 Stiffness 

 

Finally, a non-rigid deformation is applied for each vertex, regulated by a parameterߙ, which controls 
the ratio between model regularized deformation and elasticity regularized deformation. Because 
there is no prior knowledge available from a statistical shape model, only elasticity regularized 
deformation is applied. 
 
2.1.2 Building a Statistical Shape Model from Corresponded Surfaces 
A statistical shape model is built from corresponded body scan surfaces using principal component 
analysis (PCA), describing the average shape and the main variations of the body scan population. 
To build such a shape model, it is important that the surfaces are superimposed by optimally 
translating and rotating the surfaces. The optimal transformations are determined by Procrustes 
analysis. A statistical shape model can be presented with the following formula: ࢅ ൌ ഥࢄሺ࡯ ൅઴࢈ሻ, 
with ࢅ an instance of the model, ࢄഥ  the average surface, ࡯ a rigid transformation and ࢈ the shape 
parameters. Matrix ઴ holds the eigenvectors of the shape model. By adapting the shape parameters, 
a new, realistic surface can be formed. 
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2.2 Shape prediction 
Each subject of the population has specific shape model parameters and specific features. A link 
between the shape model parameters and features is sought by multiple multivariate linear regression, 
so a specific feature is represented by a linear combination of eigenmodes. Such a feature vector can 
be calculated. As a result, a specific feature, such as the height of a person, can be adapted by 
multiplying this feature vector with a factor. 
A mapping matrix ࡹ is built from the principal component weights ࡮ and the features of each surface ࡲ, describing the relationship between them [14].  ࡹ ൌ  ାࡲ࡮
With this mapping matrix, new principal component weights ࢈ can be generated from given features ࢌ ൌ ሾ ଵ݂	 ଶ݂ … ௡݂	1ሿ்.  ࢈ ൌ  ࢌࡹ
Feature-specific vectors were calculated. By adapting the weights of these vectors, the most plausible 
body shape is simulated. 
We performed two experiments to validate the feature-shape modeling. First, the extracted feature-
specific vectors were varied from -3 to +3 standard divisions and visualized on the body as a color 
map. Second, a body surface was predicted from a subset of its features and compared to the ground 
truth, to find the most relevant features for body shape prediciton. The comparison was done by 
calculating the Euclidean distance between the corresponding points of the predicted shape and its 
ground truth. 

3. Results 
3.1 Shape Model 
To validate the technique, we used 290 3D scans (145 men and 145 women) from a Dutch population 
in standing pose from the CAESAR database. The specific features of each person were known. The 
features used in this paper were gender (G), age (A), height (H), weight (W), waist circumference 
(WS), chest circumference (C), hip circumference (HP), thigh circumference (T), crotch height (CR), 
shoulder breadth (S), and breast circumference (B). The measurements are shown in Fig. 3. 

 
Fig. 3 Features used in this work 

 

The surface registration algorithm was performed for 60 iterations. From the registered surfaces, a 
statistical shape model was built. The first four shape modes of the CAESAR body model are 
displayed in Fig. 4. The colors indicate the amount of variation on that location on the surface for the 
specific eigenmode. The first mode represents mainly height and gender, while the second mode 
represents mainly weight and gender. It is not possible to link a specific feature with a specific mode. 
A specific feature consists of a linear combination of multiple eigenmodes. 

6th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 27-28 October 2015

260



 
Fig. 4 First four eigenmodes of shape model 

 

The largest variations of the body shape are described in the first modes of the model. This is 
validated by calculating the compactness of the shape model. The compactness measure describes 
how the model captures the variation. The compactness test results are visualized in Fig. 5 and 
shows that the model captures more than 90% of the shape variation within the first six modes. 

 

 
Fig. 5 Compactness 

 
3.2 Feature Validation 
3.2.1 Feature vectors 
First, we extracted the feature vectors from the model, using the given features of each sample of the 
training set. The features of the complete shape model are shown in Fig. 6.  
We could observe a difference in gender for extracting the feature vector. In the male population (Fig. 
7), a change in weight affects the whole upper body, while in the female population (Fig. 8) weight 
change is more prominent around the waist.  
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Fig. 6 Feature vectors male + female 

 
Fig. 7 Feature vectors male 

 
Fig. 8 Feature vectors female 
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From these results, we can observe some linear relations between features. Visually, it can be 
observed that a correlation exist between waist circumference, breast circumference, and chest 
circumference. There is also a correlation between gender and height. However, no correlation can 
be observed between breast circumference and height. 
In Fig. 9, the relationship between the features is displayed as a pair plot. For each pair of features, 
the Pearson correlation coefficient is calculated.  
 

 
Fig. 9 Pair plot of features. Pink denotes female subjects and blue denotes male subjects. For each pair of 

features, the Pearson coefficient is displayed. 

 

From the results of the pair plot we can conclude that there is indeed a high correlation between waist 
circumference, breast circumference, and chest circumference. However, age has little influence on 
the overall body shape, because there is no significant correlation with any other feature. Height, too, 
has little influence on the shape since it is only correlated with crotch height. 
Furthermore, a difference in gender can be distinguished. For the male population, there is a very 
high correlation between chest circumference and breast circumference. However, the correlation is 
less distinct for the female population. Another notable difference is that for the same weight, women 
have a larger hip circumference and thigh circumference than men, which could also be visually 
observed from the previous figures. 
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3.2.2 Shape Prediction 
This experiment is performed to find the most useful features to predict a body shape. In Fig. 10, 
some of the predicted shapes from the test set are displayed. All features were used to predict these 
surfaces. 

 
Fig. 10 Examples of predicted shapes 

 

This experiment is performed with 10 subjects (5 men and 5 women), not included in the training set. 
Each surface is predicted from a subset of its features. The predicted surface is compared to the 
original surface, by calculating the Euclidean distance between both surfaces as a better prediction 
results in a smaller Euclidean distance. The best performing features were calculated by predicting 
the surface from all possible combinations of its features. The prediction errors for the optimal 
combinations are summarized in Table 1. 
 

H H,W H,W, 
HP 

G,H, 
W,HP 

G,H, 
W,HP,

S 

G,H, 
W,C, 
HP,S 

G,H,W,
A,HP, 
CR,S 

G,H,W,
A,HP, 

T,CR,S 

G,H,W,
A ,C, 
HP,T, 
CR,S 

G,H,W,
A,WS,
C,HP, 

T,CR,S 
12.16 േ 3.32 

10.34 േ 2.47 
9.25  േ 2.18 

9.10  േ 2.09 
9.07 േ 2.04 

9.17 
 േ 1.96 

9.09 
 േ 2.27 

9.17  േ 2.31 
9.18 

 േ 2.17 
9.24 േ 2.25 

Table 1. Mean error when predicting a surface using optimal combination of features (in mm). G = gender, H = 
height, W = weight circumference, A = age, WS = waist, C = chest circumference, HP = hip circumference, T = 

thigh circumference, CR = crotch height, S = shoulder breadth, B = breast circumference 

 

We can deduct from the results in Table 1 that height, weight, and hip circumference are important 
features to predict the body shape. Breast circumference and thigh circumference have little influence 
on the quality of the predictions, or even lead to worse shape predictions due to overfitting. The mean 
surface errors for above predictions, projected on the average body are visualized in Fig. 11. 

 
Fig. 11 Mean errors for predicted surfaces of Table 1 in mm 

 
The largest errors appear around the arms, due to differences in pose. Pose normalization is not 
included in the shape model. 
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4. Conclusion 
In this work, we built a shape model that is adjustable in shape by intuitive parameters.  
Strong correlations exist between gender and height, and waist circumference, breast circumference 
and chest circumference, whereas no correlation was observed between breast circumference and 
height. 
With this algorithm, it is possible to predict the most plausible shape. Height, weight, and hip 
circumference are the most relevant features to predict the shape of a person. The largest errors 
appear at the arms, due to differences in pose. In future work, the prediction will be improved by 
incorporating pose normalization in the shape model. 
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