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Abstract 

The automatic and standardized extraction of the torso shape from 3D body scanning data has an 
important role in biomedical applications. In scoliosis clinics, the asymmetry analysis of the 3D scoliotic 
trunk shape relies on a prior cropping of the regions corresponding to the arms and neck. At 
Sainte-Justine Hospital, a system of four optical digitizers (Capturor II LF, Creaform Inc.) is used to scan 
the body of scoliosis patients. At present, the cropping of the trunk shapes is a manual process and is 
therefore operator-dependent, time-consuming and can affect the reliability of subsequent trunk 
asymmetry analysis. In addition, the inferior portion of the trunk (pelvic region) includes noisy geometric 
features that are due to the patient’s lower body clothing and are irrelevant to the study of scoliotic trunk 
shape deformations. In this paper, we present a robust and efficient tool to extract the meaningful torso 
regions based on automatic segmentation. The 3D body scanning system provides a 3D triangulated 
mesh of the shape accompanied by an RGB color map of the texture. An anatomical landmark placed at 
the midpoint of the posterior-anterior iliac spines (MPSIS) prior to the acquisition determines the 
separation level between the pelvic region and the rest of the torso (i.e. the lumbar and thoracic regions). 
We propose a two-phase segmentation algorithm. In the first phase, a skin-color model is used to 
separate the pelvic region from the other portions of the torso. The second phase separates the arms 
and neck regions using relevant geometric features captured by a spectral representation of the shape. 
We tested our algorithm on a dataset composed of 56 scoliotic body shapes scanned in neutral 
standing and lateral bending postures by comparing the torsos cropped automatically versus manually 
by an operator. The results show that our algorithm achieves a 0.95 (± 0.04) degree of overlap, in terms 
of the average Dice similarity measure, between the extracted torso shapes and their ground truth 
counterparts. The proposed automatic segmentation method thus constitutes a useful tool to include in 
the 3D body surface scanning systems used in scoliosis clinics. 
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1. Introduction 

Body shape segmentation is an essential process for shape analysis and understanding in different 
applications, including computer graphics, fashion design, and medicine. The segmentation of the 
shape into meaningful parts facilitates the extraction of relevant information associated with each 
subpart and, subsequently, has a significant impact on the accuracy of processing shape subparts. 
Our motivation in doing this work is to develop an automatic tool that helps analyzing the 3D 
deformations of torso shapes in scoliosis clinics. In this application, the 3D body scanning system 
captures the upper part of the body including the torso, the pelvis, the neck and the upper regions of 
the arms connected to the shoulders. Consequently, analyzing the deformations of the 3D scoliotic 
trunk shapes relies on a prior cropping or delineation of the arms, neck and pelvis subparts. At present, 
this is done manually and based on anatomical landmarks. However, previous studies show that the 
manual segmentation process affects the accuracy of the scoliosis deformity characterization and 
torso shape analysis [4, 5]. In this context, a standardized and automatic segmentation method can 
overcome these limits.    

In many applications, 3D mesh models become the conventional representation of body shapes. This 
requires most automatic methods to focus on mesh segmentation using the geometric properties of 
shape, as for instance, contour-based methods [7, 8], spectral clustering [6] and diffusion distance [9]. 
The geometric-based methods are very efficient in segmenting “low-frequency” structural information, 
such as articulated body parts. However, in our application, we need to segment parts of the body 
covered by clothing textures; it, therefore, becomes more difficult to rely on the mesh geometry to 
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accurately segmenting those regions. Interestingly, the body shape representation obtained from our 
acquisition system includes a color map of the texture in addition to the 3D mesh model. The use of 
this additional information allows us to overcome this problem and to more accurately and efficiently 
segment the shape’s different portions. More particularly, the color map will help in separating the 
pelvic region from the torso. To this end, we propose in this paper a two-phase segmentation method 
that distinctly combines geometric and texture features in order to extract the torso part of the body. 
During the first phase, the method uses the color map of the texture to delineate the pelvic region and 
separate it from the upper body. In the second phase, we use the spectral embedding of the shape to 
segment the articulated parts at the arms and neck. At the end of each phase, our method crops off the 
undesired parts and applies an interpolation on the rest of the shape. Finally, we use a nearest 
neighbor search to recover the texture information associated with the torso part. We begin this paper 
by describing the 3D body scanning system and the details of our segmentation method to extract the 
torso shape. Then, we present validation results of the proposed method on a dataset of scoliotic 
subjects with different postures to evaluate the segmentation accuracy.   

2. 3D Body Shape Scanning 

The human body geometries are acquired using a multi-head optical digitizing system (Capturor II LF, 
Creaform Inc.) located in the scoliosis clinic of Sainte-Justine Hospital in Montreal, Canada. The 
system comprises four calibrated scanners (see figure 1) placed around the patient (at the back, at the 
front, and to the right and left sides of the front angulated about 55°). Each scanner consists of a CCD 
camera and a structured light projector. They have a large field with 3D view of 1200 mm x 900 mm x 
1000 mm, a lateral resolution of 1.2 mm, a depth resolution of 1.0 mm, and a camera resolution of 0.8 
megapixels. The patient stands in the middle field of view of the four scanners (in the origin of the 
coordinate system shown in figure 1), focusing on a point above the front digitizer with arms in slight 
abduction by the side in order to minimize occlusion of the right and left sides of the torso. Prior to 
acquisition, anatomical landmarks are affixed manually to the skin of the torso surface. They are 
located at the left and right anterior-superior iliac spines, the midpoint of the posterior-superior iliac 
spines and at C7 vertebral prominence. The acquisition process, for each scanner, uses the 
phase-shifting interferometry to capture four fringe patterns, and then computes a 3D point cloud of the 
surface depth by triangulation. The entire acquisition time lasts approximately five seconds. Each 
digitizer reconstructs a portion of the body surface geometry and provides the corresponding RGB 
color map of the texture (see figure 2(a)). Using dedicated processing software, the 3D partial surfaces 
are then registered and merged to produce a complete 3D textured surface mesh of the torso, arms, 
neck and pelvis. The resulting mesh data contains between 50k and 100k vertices and between 100k 
and 200k triangles, depending on the patient's size. A previous study of this system demonstrated an 
accuracy of about 1.4 mm [1].  

3. Torso Shape Extraction 

We propose a sequential algorithm that first segments the regions covered by clothing textures (at the 
pelvic region) and then the articulated parts of the body.    

3.1. First segmentation phase 

During this phase, the segmentation relies on the color information of the texture. The color features 
obtained from acquisition are the default RGB (Red-Green-Blue) components. We use these features 
to distinguish between skin and non-skin regions of the shape. However, the RGB channels are, by 
their very nature, highly correlated and include redundant information. In addition, they are sensitive to 
intensity variations, which affect the segmentation accuracy [10]. It is therefore important to choose a 
color transformation that allows for better color constancy and discrimination power. It is the primary 
step in skin-color segmentation. For this goal, several transformations were proposed in the 
state-of-the art, as surveyed by [11]. Among these, we choose an orthogonal color spaces, namely the 
YIQ representation (see figure 2). We favor this color space for two reasons: first, as an orthogonal 
space, it reduces the redundancy existing between the RGB channels. Second, it represents colors by 
statistically independent luminance ( ) and chrominance ( , ) features. This allows us to efficiently 
drop the intensity features and perform skin segmentation in a robust manner with respect to variable 
illumination conditions. Following this choice, we use the -component, which includes color features 
ranging from orange to cyan and covers a significant range of the skin tones [12].  
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Let x =  (x, y, z)  be a surface coordinate point of the shape, and I (x)  be the I-color component at 
this point (x) . As illustrated in figure 2(c), the histogram function of this component represents a 
mixture of two models: each one represents the distribution of the chrominance values, in the skin and 
non-skin regions, respectively, which can be approximated by a Gaussian model. A threshold value 
can, therefore, be computed from a statistical inference based on the Bayes decision rule. The 
decision function is formulated in terms of the class-conditional probabilities of the skin and non-skin 
models, while the likelihood ratio test (LRT) is defined as follows: 
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1
;H

1
)

P(I (x) | Θ
0
;H

0
)

> γ ,   (γ > 0)   
(1) 

 
where Θ

0
,  Θ

1
are the models parameters under hypotheses H

1
(skin) and H

0
(non-skin), respectively, 

and γ  is the likelihood threshold determined according to a desired level of significance (e.g., 

α = 5% ) that controls the false positive rate. Computing the log-LRT, we get: 
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vectors. In order to estimate the model's parameters under both hypotheses, we use the well-known 
iterative expectation-maximization (EM) algorithm. Finally, the skin and non-skin color regions are 
separated at 5% significance level according to (2). In the example illustrated in figure 2, the 
segmentation threshold obtained for  equals -0.1. This threshold isolates the regions covered 
by clothing and the anatomical landmarks fixed on the skin prior to acquisition. To obtain a 
standardized cropping of the pelvis across all shapes, we choose to segment it below the MPSIS 
landmark located on the lower back (see figure 2(a)). Figure 2(c) (bottom right of figure) illustrates the 
segmentation result of the first phase. 

α = 5%

Fig. 1. The Creaform 3D Body scanning system used at Saint-Justine hospital. 
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3.2. Second segmentation phase 

After cropping the pelvis, we apply an interpolation on the rest of the surface mesh using the RBF 
algorithm [2] to smooth the boundaries and close the holes (see figure 3(a)). This interpolation step is 
necessary to accurately extract the geometric features needed to segment the articulated parts of the 
body in the second phase. For this next stage, we use the spectral clustering approach based on the 
Graph Laplacian and Gaussian mixtures [3]. We describe first the spectral graph decomposition of the 
shape, and then we show how relevant features can separate the articulated regions using Gaussian 
mixture modeling. 

3.2.1. Spectral graph decomposition of shapes 

Let G = (V ,E)  be a connected undirected graph where V  represents a set of N nodes 
corresponding to the mesh elements (i.e., triangles), and E  is the set of edges connecting pairs of 
neighboring vertices. We present a graph Laplacian on the surface mesh points x  with its N × N

weighted adjacency matrix W , where the edge weights are given by w
ij

= exp − x
i
− x

j

2

/ 2σ 2( ) if 

(i, j) ∈ E  
and 0  otherwise. The Laplacian matrix (L)  of the graph is semi-definite positive and 

symmetric defined by L = D
−1

D − W( ) , where D  is the diagonal degree matrix, D
ii

= w
ij

j=1

N

∑ . The 

spectral decomposition of the Laplacian matrix, L = ΦT ΛΦ , defines the set of the eigenvalues 

a) Texture-mapped torso surface 

l-histogram 

skin model 

non-skin 
model  

I-color values 
c) Pelvic region segmentation 

b) YIQ color space representation 

First segmentation 

Fig. 2. Illustration of the first segmentation phase to separate the pelvic region from the upper body shape. 
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, where λ
1
 is the smallest non-zero eigenvalue, and the associated eigenvectors 

, which are normalized in the range [−1,+1] . Without loss of generality, we focus here on 

the first 6  eigenvectors since they capture the “low-frequency” geometric properties of the shape 
corresponding to the articulated subparts. More particularly, we select the second and forth 
eigenvectors to extract segments at the arms and the neck. Figure 3(b) shows how these selected 
eigenvectors behave on the body shape; positive and negative values of the 2nd  eigenvector near 
±1 are located at left and right arms (shoulders), while high positive values of the 4th  eigenvector 
are located in the neck region. As can be noticed, in spite of the local noise at the boundaries of the 
shape and posture changes, these features are stable and describe the same geometric structures of 
the shape. This is an important benefit of the spectral shape representation: the first embedding 
components capture intrinsic and global geometric structures that are invariant to the position changes 
of the surface points in the Euclidean space [13]. 

3.2.2. Spectral Clustering using Gaussian Mixtures 

To segment the articulated shape subparts, we propose a multi-threshold approach based on the 
distributions of the selected eigenvectors. In an analogous manner to the segmentation in the first 
phase, we use the Gaussian mixtures to estimate the distribution models. Note that the Gaussian 
mixture model (GMM) was proposed in spectral mesh segmentation with the Bayesian information 
criterion to cluster local regions along the extremities of the eigenvectors [3]. In our case, we will use 
the second and fourth spectral features to crop the arms and the neck articulated to the torso shape. In 
contrast to the segmentation in section 3.1, the GMM model will be composed of multiple components 
and a multiple hypotheses must be considered. 
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Fig. 3. Illustration of the second segmentation phase using the spectral features 
(2nd and 4th eigenvectors) of the surface mesh and Gaussian mixtures. 
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Let φ
j
(x) , with j ∈{2,4} , be the selected Laplacian eigenvector defined at the surface point 

coordinate x = (x, y, z) . Accordingly, we formulate the likelihood ratio test (LRT) of multiple hypotheses 
for the  eigenvector as follows:  

where γ
k
 is the threshold corresponding to the hypothesis (model) H

k
, Θ

c
 is the parameter vector 

of the model H
c
 , and C  is the number of models or mixture components. We set this 

number according to the structure of  such that C = 4 for j = 2  and C = 3  for j = 4 . This 

can be observed in figure 3(b); the positive and negative values of the second eigenvector correspond 
to the right and left sides of the trunk shape, respectively. The total number of the GMM components is, 
therefore, twice the number of components on one side, which is two in our case. The fourth 
eigenvector concentrates its extreme positive and negative values at the head and around the waist, 
respectively. The segmentation threshold is determined by finding the maximum LRT estimates for 
each of the model’s parameters Θ

k
,  Θ

c
using the log-LRT with EM optimization. Consequently, for the 

second eigenvector, we obtain two thresholds that delineate the arms (shoulders), and one threshold 
from the fourth eigenvector that separates the neck (or head) from the body (see figure 3(b)). Figure 
3(c) illustrates the segmented shape regions in different colors.  

The torso mesh surface is thus obtained by cropping off the segmented regions at the arms and neck. 
We then interpolate the mesh surface to smooth the boundaries and close the holes left by the 
removed subparts. Note that interpolating the mesh leads to slight changes of the positions of the 
nodes and their connections and, therefore, leads to losing the color information. In order to recover 
the color features for the extracted torso shape, we find the closest positions between the nodes of the 
original and processed meshes using a nearest-neighbor search. Finally, we associate the torso mesh 
nodes with the color values of their corresponding nodes from the original mesh. Figure 4. Illustrates 
the pipeline scheme of the proposed approach starting from the raw data and leading to the final result.  

 

5. Validation Results 

We applied the proposed method to a dataset of 56 scanned body shapes in three different postures: 
left and right lateral bending and neutral standing postures. These samples belong to scoliotic patients 
who were examined and operated at Sainte-Justine Hospital in Montreal. To validate our automatic 
segmentation approach, an experienced operator provided us with a ground truth by processing the 
same set of trunk shapes using a manual segmentation tool. This manual process consists in digitizing 
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Fig. 4.  Flowchart of the torso extraction pipeline. 
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the 3D coordinates of a set of anatomical landmarks: the skin markers at the VP, left and right ASIS 
and MPSIS to delimit the upper and lower torso limits, and the armpits to delimit the shoulders. Cutting 
planes are then automatically computed to remove the neck, pelvis and shoulders. In the lateral 
bending case, additional landmarks must be digitized on top of the shoulders and the clavicle to orient 
the arm and neck cutting planes correctly.  
To visualize the comparison results, we projected the torso meshes extracted from both segmentations 
onto the original shape and measured their degree of overlap. Figure 5 Illustrates three examples of 
the segmentation results representing the tree different postures. The average Dice overlap using the 
Dice similarity measure, computed as , is  over all the shapes. This 
result is considered satisfactory for subsequent scoliotic shape analysis. 

 

 

6. Conclusion 

In this paper, we have proposed an automatic segmentation tool to extract the torso region from the 3D 
upper body scanning data in two sequential phases. The advantage of our method is that it combines 
texture color and geometric information to facilitate the discrimination of the articulated shape subparts 
as well as the regions covered by clothing. Furthermore, each segmentation phase relies on a feature 
representation space that captures relevant information to accurately separate shape subparts. The 
YIQ color space allows us to reduce the sensitivity of our approach to the differences in illumination 
conditions, while the graph Laplacian embedding captures the intrinsic geometry of the shape and is 
robust with respect to posture changes. Our proposed segmentation method constitutes a very useful 
tool to include in 3D body surface scanning systems used in scoliosis clinics and other applications 
that involve torso shape analysis.   
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