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Abstract 
Accurate localization of anthropometric landmarks is crucial for processing and analyzing 3-D 
anthropometric data. For example, landmarks are used to extract dimensional measurements from 3-
D scans of human bodies. They can also be used to fit a template model to the scans such that a 
correspondence across the scans can be established. From this correspondence, we can perform 
statistical shape analysis to understand the variabilities of human shapes. In this paper, we propose a 
new method for localizing anthropometric landmarks using a combination of 3-D surface features and 
the latest deep learning techniques. The method makes use of geometric features represented as 
descriptor vectors. We first identify a set of locations that exhibit salient geometric features. Then we 
use pre-registered 3-D models to train a classifier for each geometric landmark. With the geometric 
landmarks, we fit a template to the data scan. The full set of anthropometric landmarks can be predicted 
from the template-fitted model. We validate our method using the 2012 Canadian Forces 
Anthropometric Survey (CFAS) dataset where 2,200 full-body scans were collected. 
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1. Introduction
As a result of the ever-increasing use of 3-D body scanning technologies, a large amount of 3-D 
anthropometric data have been produced [10, 20]. 3-D data capture the surface geometry of the human 
body and contain much more information about the shape of the human body than the traditional 1-D 
measurement data and is potentially capable of greatly enhancing the design of products that fit the 
human body. However, 3-D data pose new challenges: the amount and complexity of the 3-D data 
prevent them to be used effectively. Much processing is necessary before we can make full use of the 
rich information contained in them. One of the first processing steps is to fit a template mesh to every 
raw scan. This way, correspondence among the data models is established, making the unordered, 
noisy, and incomplete 3-D data comparable, paving the way to subsequent processing and analysis, 
such as creating statistical shape models and extracting physical measurements from the 3-D models 
[1,4,19,23-25,28]. Anthropometric landmarks are stable corresponding positions on the human body 
that exist across the population. If we find these points accurately, we will have grasped the structure 
of the human body from the scans, and other corresponding points can be found by interpolation.  

Early attempts of automatically localizing landmarks are rule-based [6, 18]. Each landmark is defined 
by a set of rules describing its geometric location. For example, the tip of the nose would be defined as 
the most front point of the face. However, these rules often assume specific coordination systems and 
postures. Therefore they are not generically applicable to all scans and tend to have many exceptions. 
Furthermore, the number of exceptions can quickly grow unmanageable. 

Several learning-based methods have been proposed. Ben Azouz et al. [2] suggested a method that 
uses a statistical graphical model to capture the relationships among the landmarks. The parameters 
of the graphical model are learned from training data. Reasonable results were achieved for small test 
sets [9]. However, only SPIN image [13] is used for surface feature description. 

Creust et al. [5] propose a machine-learning approach in which landmark localization is formulated as 
a classification problem. Multiple scalar surface descriptors, such as Gaussian and mean curvature are 
combined to describe the local surface properties at the landmark locations. A classification function is 
learned from training data. Recently, Xi et al. [29, 30] use a deep learning approach to identify landmarks. 
Local surface patches are represented as images by simulating a camera taking pictures of the area. 
A convolutional neural network is trained to compute surface features implicitly and to classify a point 
as landmark or non-landmark. Both of these learning-based methods have an issue of training: while 
we know which points are landmarks, it is difficult to decide which points should be used for non-
landmark examples for training. 
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More recently, several authors have proposed solutions to the dense shape correspondence problem 
[17, 26, 32]. While promising results have been achieved, these methods emphasize global solutions 
to models with arbitrary postures. Furthermore, no public benchmark data are available for 
anthropometric landmarks. In the context of ergonomics and design applications, anthropometric 
landmarks have special importance and require individual treatment.  
 

 
 

Fig. 1. Geometric landmarks. 
 
In this paper, we re-visit surface features by examining the latest 3-D surface descriptors. These 
descriptors were developed in computer vision for matching, recognition, and retrieving of 3-D objects. 
The main feature of these descriptors is that the area upon which a descriptor is based is a variable. In 
other words, the degree of localness is controllable. This allows us to characterize the local surface 
patches that surround the landmark using statistics of geometric properties. This information is 
subsequently used to match points on the surface against a template. We demonstrate that certain 
landmarks can be identified reliably by simply matching these feature descriptors.  
 

Throughout this paper, we use head models as an example to demonstrate our proposed techniques, 
but the method applies to data for the full-body or any other parts of the body. 
 

2. Landmark localization 
2.1. Geometric landmark and patch features 
To locate anthropometric landmarks on the scan models, we need to study the geometric properties of 
the landmark locations on the surface of the human body. The scan data is a digital representation of 
the human body surface and it is all the information we have for predicting the landmarks. Unfortunately, 
not all of the landmarks have salient surface features. Human operators rely on palpating the underlying 
bone structure to locate the landmarks. Without pre-marking, even human experts cannot locate certain 
landmarks accurately on the scan model. To solve this problem, we have identified a set of geometric 
landmarks that correspond to the points that exhibit strong surface features. These landmarks are used 
to fit a template mesh and the anthropometric landmarks that are not in the set of geometric landmarks 
can be predicted indirectly by the fitted template [31]. 
 

Fig. 1 shows the geometric landmarks we have selected for the head model. When selecting geometric 
landmarks, we consider two aspects. One is that the local surface should be distinguishable from the 
nearby surface area. For a point like this, we select it together with a set of surrounding points to make 
a surface patch. We call this a patch feature. The sizes of these patches vary from landmark to landmark 
and are learned from training data (see section 2.3.1). Another consideration is the importance of a 
location. Certain locations are strategically important for fitting a template model. For example, the two 
landmarks on the ear are such points. 
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2.2. Surface feature descriptors 
In recent years, the computer vision community has developed many effective algorithms for identifying 
salient geometric features in 3-D scans [12]. These features capture the local surface properties and 
they have been used successfully for recognizing shapes from 3-D data. We have investigated several 
feature descriptors, including SHOT (Signature of Histograms of OrienTation), FPFH (Fast Point 
Feature Histogram) [21], and 3DSC (3D Shape Context) [8]. All these descriptors represent the local 
surface by statistical distributions of geometric attributes, such as normal and curvature, of the points 
on the surface. They are invariant to rigid transformation. Through experiments, we found that SHOT 
produced the best results [22]. 

 
Fig. 2 SHOT surface descriptor. 

 
SHOT descriptor is a point signature which encodes the histograms of the angle between the surface 
normal in a spherical support region. As shown in Fig. 2, the support region is discretized into small 
volumes along the radial, azimuth, and elevation dimensions. For each volume, a histogram is 
computed by counting the number of points that fall into the bins according to the angles between the 
normal of the points within the volume and the normal of the signature point. All of the histograms are 
combined together to form a 1344-dimensional vector. In other words, SHOT descriptor represents the 
local surface geometry compactly. Furthermore, by varying the support region, we can control how 
‘local’ the descriptor needs to be. 
 
2.3 Reference model 
To detect landmarks, we choose a scan as the model and manually mark the location of the landmarks. 
The model serves as a reference for the landmarks whose surface descriptors are compared with in 
order to detect the landmarks. When choosing the reference model, we avoid those faces that have 
extreme shapes and find one that is close to the average model. However, it is not necessary to find an 
optimal reference model. Our algorithm relies on the property that landmarks are geometrically 
distinguishable from their surrounding points and the majority of the human beings share this property.  
 

We then compute the feature descriptors at the landmark points and these descriptors become the 
model to check against.  
 
2.4 Landmark detection 
2.3.1 Learning for support region 
A surface descriptor for a point looks at the surrounding points on the surface and compute statistics 
about the geometric properties in the region. The size of this region is a parameter that we need to 
decide. If it is too big, it ceases to be a local descriptor and loss its power to describe the landmark. It 
is also costly to compute. On the other hand, if it is too small, the descriptor is sensitive to surface noise.     
 

The proper size of the support region for the landmarks are decided by a learning process. A set of 
scans with ground truth landmarks are set aside and the size of the support is varied in small increments 
within a range. Then the detection algorithm is run through the training set and the best performing size 
for each landmark is chosen for the rest of the scans. 
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Fig. 3. Support regions for each landmark. 
 
2.3.2 Candidate points 
When predicting the landmarks, we find the best matches for the feature descriptors on the target scan. 
To search for the matching landmark, we first find a candidate region on the target scan. This region 
can be found by using a rough template fitting based on a few extreme points, such as the top of the 
head and the tip of the middle fingers [11]. For head models, a simples scaling and an ICP [3] alignment 
with the reference model is enough to obtain the candidate points. 
 
2.3.3 Search 
Finally, the feature descriptor for each point in the candidate region is computed and compared with the 
model landmark feature. The best match is regarded as the found landmark. In Fig. 3, the descriptor 
support region is shown in green dots.  
 

The feature descriptor of a single point can be unreliable due to noise. We collect a small patch around 
each landmark point and compute the feature descriptors. The difference between the model point and 
the candidate point is evaluated according to the following equation: 
  

( ) =  ‖ − ‖
∈ ( )

 

 

Where ( ) is the collection of descriptors in the patch surrounding the point  and  is the nearest 
neighbor of  in the candidate set. 
 

3. Results 
Table 1 shows the results of the landmark prediction. 
 

Table 1. Accuracy of landmark prediction. 
 

Landmark 
no. 

1 2 3 4 5 6 7 8 9 10 11 

Mean 
(cm) 

0.429 0.480 0.275 0.332 0.757 1.154 0.880 0.749 2.276 0.829 0.941 

Std 0.570 0.467 0.460 0.299 0.383 0.745 0.624 0.468 1.420 0.308 0.387 
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Fig. 4. Prediction error distributions. 

 
We validated our method on the CFAS (Canadian Forces Anthropometry Survey) dataset. The CFAS 
dataset consists of 2,200 scans of Canadian military personnel. In this study, we used the head scans. 
HumanSolution scanners were used to collect the data. 200 models were set aside for learning the 
support size and the rest of the models were used for testing. 
 

We used MeshLab to manually pick the landmarks for validation. The programs were implemented in 
C++. Point Cloud Library (PCL) was used to compute the surface descriptors. The PCL functions 
assume only point cloud representation. In our case, however, we have triangle meshes to represent 
the scan models and thus can compute the surface normal more reliably. Therefore, we use the mesh 
surface normal for computing the surface descriptors. Finally, in the CFAS survey, landmarks were pre-
marked. However, in this study, we did not make use of this information. Thus, the results shown here 
were obtained by using purely geometric information.  
 

4. Conclusions 
We have introduced a method for localizing anthropometric landmarks in 3-D scans of humans. We 
demonstrate that the SHOT surface descriptor can be used effectively to identify certain landmarks. 
This method is simple to implement and does not involve complicated structures.  
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Although the recent deep learning techniques [15] offer effective tools for 2-D landmark identification, 
there are difficulties when it is applied to 3-D scan data. Chief among them is the problem of converting 
3-D data to 2-D images to take advantage of the convolution networks. 3-D surface descriptors provide 
an efficient representation for landmark localization. For future work, we will investigate the possibility 
of integrating surface feature descriptors with deep learning techniques. 
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